Cryogenic vessels - Pressure-relief accessories for cryogenic service - Part 3: Sizing and capacity determination
NORM herausgegeben am 1.12.2016
Bezeichnung normen: ČSN EN ISO 21013-3
Zeichen: 697248
Katalog-Nummer: 500852
Ausgabedatum normen: 1.12.2016
Zahl der Seiten: 48
Gewicht ca.: 144 g (0.32 Pfund)
Land: Tschechische technische Norm
Kategorie: Technische Normen ČSN
This part of ISO 21013 provides separate calculation methods for determining the required mass flow to be relieved for each of the following specified conditions:
- vacuum-insulated vessels with insulation system (outer jacket + insulating material) intact under normal vacuum, outer jacket at ambient temperature, inner vessel at temperature of the contents at the specified relieving pressure;
- vacuum-insulated vessels with insulation system (outer jacket + insulating material) intact under normal vacuum, outer jacket at ambient temperature, inner vessel at temperature of the contents at the specified relieving pressure, pressure regulator of the pressure build-up system functioning at full potential;
- vacuum or non-vacuum-insulated vessels with insulation system remaining in place, but with loss of vacuum in the case of vacuum-insulated vessels, outer jacket at ambient temperature, inner vessel at temperature of the contents at the specified relieving pressure or vacuum or non-vacuum-insulated vessels with insulation system remaining fully or partially in place, but with loss of vacuum in the case of vacuum-insulated vessels, fire engulfment, inner vessel at temperature of the contents at the specified relieving pressure;
- vacuum-insulated vessels containing fluids with saturation temperature below 75 K at 1 bar with insulation system remaining in place, but with loss of vacuum with air or nitrogen in the vacuum space;
- vacuum insulated vessels containing fluids with saturation temperature below 75 K at 1 bar with insulation system remaining in place, but with loss of vacuum with air or nitrogen in the vacuum space with fire engulfment;
- vessels with insulation system totally lost and fire engulfment.
Good engineering practice based on well-established theoretical physical science needs to be adopted to determine the required mass flow where an appropriate calculation method is not provided for an applicable condition